
In part 2 of this introductory lecture to Feedback Control, we will look at how
feedback changes the overall system transfer function. We will also examine how a
system block diagram in the Laplace or s-domain can be simplified.

we will also examine how feedback control is used in a practical system. We will
learn about how feedback give us many advantages. We will also take the DC
motors we use in the mini-Segway as an example and see how feedback can help us
to control the motor speed and its transient behavour.

Let us apply these transformation technique to our closed-loop system of the motor
or the insulin pump.

We can easily derive (using 1 and 6) that the transfer function from R(s) to Y(s) is as
shown here.

We will see in the next lecture why this is significant.

Loop gain is an important concept.

If we break the feedback loop at just BEFORE we subtract the feedback signal from
the desired input R(s), the gain of the system around the loop (without feedback) is
known as loop gain. In the generic system shown here, the loop gain:

L(s) = Gc(s) G(s) H(s).

You will find this quantity popping up all over the place in any feedback systems. In
many cases, the higher the loop gain, the “better” is the control system. However,
increasing the loop gain also make the system more prone to instability (i.e. it can
become oscillatory).

Here is the feedback system we used in the last lecture. The controller is under our
control. The purpose is that with the negative feedback, we can make the system
behaviour in a better way than an open-loop system.

If you derive the transfer function from R(s) to Y(s), you find that the transfer
function of this closed-loop system becomes:

Provided that the loop gain L(s) is large compared to 1, this give us a value of 1 (for
all s values). That means the output Y(s) is tracking the set point (desired control
variable value) R(s) because of this feedback loop.

This is an important result. The closed-loop system behaviour is now INDEPENDENT
of G(s), the system we are controlling, as long as the loop gain L(s) = Gc(s) G(s) is
large as compared to 1.

!(#)
%(#) =

'((#)'(#)
1 + '(# ' # = +(#)

1 + +(#)

Now let us consider the error e(t) or E(s) in the s-domain. Ideally you want Y(s) to
be exactly R(s), that is, what we set as desired, is what we get.
However, in any systems, there may be an error.

E(s) = R(s) – Y(s).

Let us now consider the case that the input r(t) is a step function with a step value
of A, i.e. r(t) = A u(t) at t = 0.
This is modelling the case that you may be controlling a robot arm to move from
one point to any other at time = 0, or changing the motor speed from one to an
other.

Remember from earlier lecture that the Laplace transform of A u(t) is:

The question is: after such as step, what will the output eventually settle down to?
In order to answer this question, we have to use some important theorem, known
as the final-value theorem, which states:

I don’t want to prove this, but it allows you to computer the final value of a signal
using only the s-domain equations (i.e. the transfer function). As shown in the slide
here, the final value of the error e(t) = A / (1 + L(0)), where L(0) is the loop gain at
s=0, or the DC gain of L(s).
In other words, the steady-state error (when s=0) is A reduced by a factor of (1+L(0))

% # = + ,- . = ,1#

lim
2→4

5 . = lim
6→7

#8 #

Let us now consider the impact of closed-loop on perturbations P(s) or p(t).

This is added as shown in the block diagram.
We are interested in the relationship between Y(s), the output, and the perturbation
P(s).
To work this out, there is a good trick – always evaluate at the signal point AFTER
the summer. In this case, it is the input to the system G(s). Let us call this T(s).

Some simple algebra yield the answer:

If we did not have closed-loop, but have a simple open-loop system, then Y(s) =
G(s)P(s). That is, the perturbation is passed to the output through our system as-is.

However, putting the system G(s) in this feedback loop, we reduce this effect by the
factor . Note that this factor comes up all the time!

If loop gain L(s) is relatively large as compared to 1, then the perturbation is reduced
by the factor of L(s) at all value of s.

! # = '(#)
1 + + # 9 #

1
1+ + #

Now let us put into the system the sensor noise n(t) or N(s).
With some manipulation, we found that:

Unfortunately the output is VERY MUCH affected by the noise. If L(s) is large, as we
have assumed in previous slides, then N(s) is more or less passed to the output Y(s).

Fortunately, in many practical systems, N(s), the noise, generally is at high
frequency. If G(s) or Gc(s) has low gain at high frequency (lowpass filter), L(s) << 1 at
high s, then,

Since L(s) << 1, N(s) can be suppressed.

! # = −+ # ; # = − +(#)
1 + + # < #

! # ≈ −+ # < #

So far, we have been considering the theoretical foundation of a feedback system.
Let us know consider something that is both real and that you are familiar with.

Plotted here is the speed of two typical DC motors used for our project. These are
motors from the mini-Segway that I have been personally using.
The plot is the pulse count from the hall effect sensor (in a 100ms window) vs the
PWM duty cycle driving each motor.

We can make the following observations:
1. The characteristic is relatively linear – that is speed is proportional to PWM

value.
2. The two motors have more or less the same gradient of around 20

pulses/sec/PWM%. In other words, if you increase PWM value by 10, you can
expect the pulse count to increase by 20 in the duration of 1sec.

3. The two motors are not matched. The BLUE motor is consistently faster (offset)
from the RED motor by 50 pulses per second. Or in order for the two motor to
go at the same speed, the RED motor needs to be driven with an extra 20% in
PWM!

4. Both motors do not start turning unless the PWM value exceeds around 6 or 7%.
5. Something funny happens to the RED motor in mid-range. Not sure why!

This characteristic really demonstrate why we may need to use feedback control in
order to make the motor drive at desired speed independ its own characteristics.

I also test the response of the motors to a step input (going from PWM=0% to 75%).

This shows that both motor behaves approximately to a first order function with an
exponential rise of time-constant = 0.2sec.

Any first order system responses to a step inout as a exponent rising signal with a
time constant t, where t is the time it takes to reach 63% of final value. (Remember
the RC time constant from Year 1?)

With these information, we can write down the transfer function of the motor.
The dc gain is Km, and it is 20 pulses/sec/PWM%.
The time constant is 0.2sec.

Therefore the motor transfer function (from PWM duty cycle in %) to output speed
(in pulses/sec) is:

In this discussion, we assume the feedback transfer H(s) = 1.

' # = 20
0.2# + 1

Now let us plug this motor into our simple feedback system with the control Gc(s).
Furthermore, let us assume that the controller simply multiply the error signal e(t)
by a constant gain Kp. In other words, the drive signal is proportional to the error
signal.
This is known as “proportional control” and the proportional gain is Kp.
Some algebraic manipulation give us:

We will consider the implication of this result next.

!(#)
%(#) =

20AB
1 + 20AB + 0.2#

= 20AB/(1 + 20AB)
1 + 0.2

1 + 20AB #
= AD
1 + E(#

AD =
20AB

1 + 20AB E(=
0.2

1 + 20AB

Remember:

Let us assume the proportional gain Kp = 5 (not unreasonable), then the steady-
state transfer function:

Y(0) = 0.99 R(0)

In other words, at steady state, the output tracks the input to 1%.

Also the steady-state error for a step of magnitude A, is also 1% of A – very small.

The sensitivity to perturbation is also reduced by a factor of 100.

Finally, if you rearrange to closed-loop transfer function to the form shown, you can
see that the closed-loop time constant tC is also reduced from 0.2 to around 0.002,
also around 100 times.

This is the wonderful world of feedback control!
One word of warning – everything is not as rosy as it may seem. We have not
considered an important factor: the stability of the system. As we increase the
proportional gain Kp, the system could go unstable if the system is NOT strictly first
order. We will consider stability issue later.

!(#)
%(#) =

20AB
1 + 20AB + 0.2# =

20AB/(1 + 20AB)
1 + 0.2

1 + 20AB #
= AD
1 + E(#

AD =
20AB

1 + 20AB E(=
0.2

1 + 20AB

